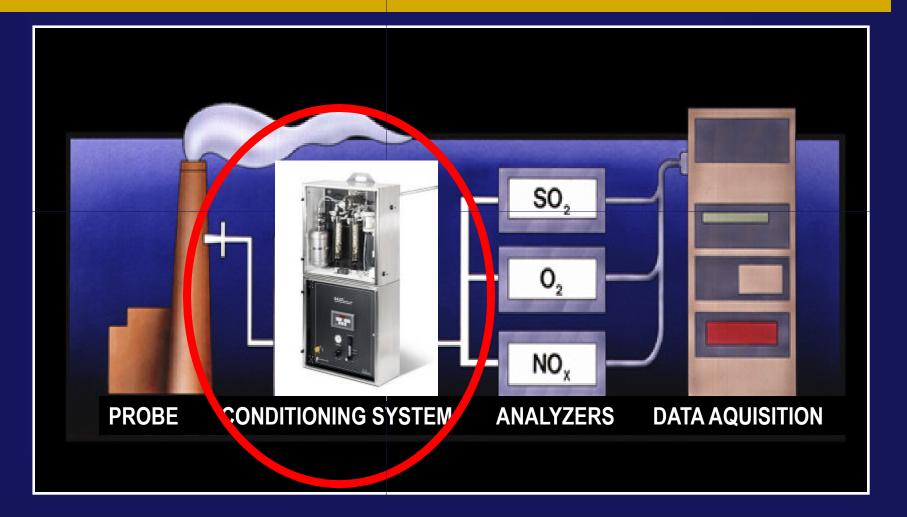
Perma Pure LLC


Low-NOx Fallout: Ammonia in Your Sample System

EPRI CEMS User Conference

May 15, 2009

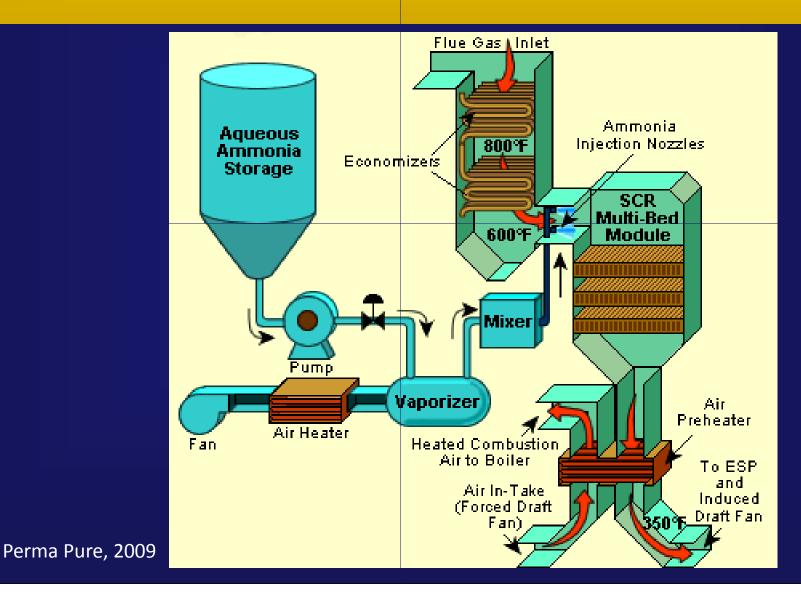
Sample Handling – Critical Path for CEMS

Perma Pure, 2009

Perma Pure – Gas Sample Handling

3 Technologies:

- Dilution Probes
 - Wet measurement
- Baldwin[™] brand Thermoelectric Coolers
 - Water removal through flash condensation
- Nafion[®] permeation dryers and systems
 - Water removal at the stack through unique membrane dryer technology


• Plus probes, filters, scrubbers, accessories

Selective Catalytic Reduction (SCR)

- Reduction of NOx by injection of ammonia
 - NH₃ and O₂ react with NO and NO₂ to form N₂ and H₂O
- Or, by injection of urea
 - (NH₂)2CO and O₂ react with NO to form N₂, H₂O and CO₂
- Similar Processes hold for SNCR

SCR System for NOx Control in a Boiler

Page 5

The Fallout: Ammonia Slip

- When unreacted ammonia is released into the flue gas stream. Causes:
 - Added ammonia is never entirely consumed
 - Catalyst temperatures are not in the optimum range
 - Too much ammonia is used
- Can be mitigated by "slip catalyst"

Ammonia Slip

- Range: 1 ppm up to 200+ ppm
- 5-20 ppm is a typical measurement
- In many cases, release of NH₃ is not regulated or even reported
- Unfortunately, Analyzer Shop does not control the rate of ammonia injection
- Process operators are often not concerned about ammonia slip

Unwanted Consequence #1

- NH₃ is a catalyst in the formation of SO₃ from SO₂ and O₂
- As vapors condense, you also get:
 - − $SO_3 + H_2O \rightarrow H_2SO_4$ (Sulfuric acid)
 - $NH_3 + H_2SO_4 \rightarrow NH_4HSO_4$

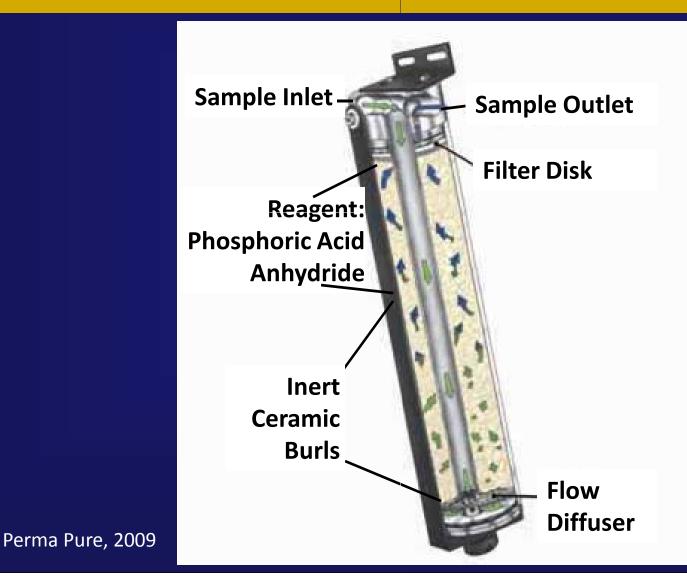
(ammonium bisulfate – ammonia salts)

Unwanted Consequence #2

- Downstream formation of ammonium bisulfate – "ammonia salts"
 - due to sulfur content of the fuel source
 - white and powdery when pure, it forms "large rhombic prisms" as it condenses
 - collects and fouls solid surfaces in flues, probes, filters, sample lines and inside analyzers
 - forms in tight spaces, eg. O₂ analyzer paramagnetic mirror

Unwanted Consequence #3

- Conversion of NH₃ back to NO
 - can happen even at lower temperatures
 - can artificially inflate NOx readings
 - when every PPM counts, can cause a failed RATA
 - are you paying for NOx, but not NH₃, emissions?

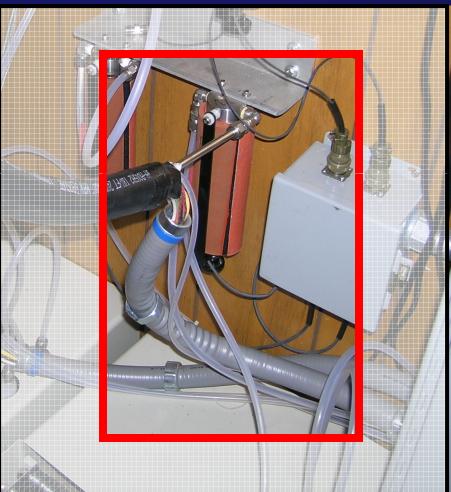

Ammonia Scrubber

- Protects analyzers and downstream components
 - Eliminates ammonia salt deposition
- Very selective reagent
 - Phosphoric acid removes only bases
- Very high corrosion resistance
 - Housing: stainless steel, polysulfone
 - Element: H₃PO₄ on inert ceramic
- Reliable and low maintenance
 - No moving parts, only periodic refills

Scrubber Flow Schematic

Hot, Wet Chemistry

- Target Temperature 80-90°C
- Ammonia reacts in vapor form
- Water remains in vapor form
 - Otherwise, the bottom fills with liquid
 - Heater blanket maintains 90°C
- Or, maintain 80-90°C in heated enclosure

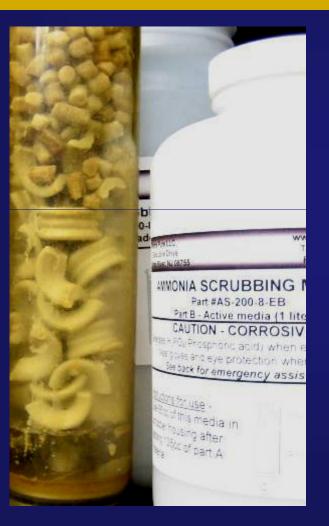

Hot Wet Chemistry

- 1st Stage Reaction: Phosphoric acid anhydride must be wetted
 - Install upstream of cooler or Nafion[®] sample conditioning system
 - If downstream of cooler, spray with de-ionized water when refilling reagent
- 2nd Stage Reaction: Formation of ammonium phosphate – salts
 - Collect on the inert ceramic burls at bottom of scrubber

Sample Installation

 Sample line feeds first to ammonia scrubber, then to cooler

Spent Ammonia Scrubber



Note: Scrubber should NOT be mounted horizontally, as this one was

Perma Pure, 2009

Maintenance

Refill media every 40,000 liter/ppm/hours Hand tighten mounting screw Example:

- Flow rate = 10 lpm
- Slip = 5 ppm
- Change Media every 33 days

